“ EXTENSIONS TO RANDOM
POLYGON GENERATION IN
SPHERICAL CONFINEMENT



— OUTLINE

= » SHORT SUMMARY FROM THIS MORNING’S TALK ON RANDOM POLYGONS FROM CLAUS

e EXTENSION 1: WHAT HAPPENS IN SPHERICAL CONFINEMENT FORR < 12
* DOES THE MODEL PRODUCE REASONABLE DATA?
* IS THE DATA CONSISTENT WITH PREVIOUS SPHERICAL CONFINEMENT DATA?
* CAN WE QUANTIFY THE ‘CONFINEMENT RADIUS’ FOR THE MODEL?

* EXTENSION 2: BIASING POLYGONS IN CONFINEMENT TOWARDS THICKNESS
* DOES THE MODEL PRODUCE REASONABLE DATA?
* IS THE DATA CONSISTENT WITH PREVIOUS SPHERICAL CONFINEMENT DATA?
* CAN WE QUANTIFY THE EFFECT OF THICKNESS

BIRS - 2024: Random Models and Experimental Data
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OUTLINE

MOTIVATION

CYLINDRICAL MODEL & DATA COLLECTED

QUESTIONS:
* DO THE CYLINDRICAL POLYGONS SEEM TO BE GENERATED IN CONFINEMENT WITH R < 12

* ARE THE FEATURES OF THE CYLINDRICAL POLYGONS IN LINE WITH THE FEATURES OF SPHERICAL
POLYGONS?

* CAN THE CONFINEMENT RADIUS BE QUANTIFIED?

ASYMPTOTIC BEHAVIOR OF RANDOM POLYGONS OF LENGTH 30 FOR R = 0.5+

BIRS - 2024: Random Models and Experimental Data



MOTIVATION — EXTREME CONFINEMENT
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We could only study confinement spheres with a radius larger
than 1, due to the properties of the generation algorithm.
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APPROACH

Simple model — polygons do not have
exact probabilities as in tight spherical
confinement

* Generate random, nearly equilateral
polygons which lie within a cylinder with
flat top and bottom disks.

* Uniformly pick points on the top and
bottom of a cylinder of height h and
radius r.

* Connect the points and then connect the
last point to the first point.

BIRS - 2024: Random Models and Experimental Data



CYLINDRICAL MODEL

* The probability to randomly generate .
certain knots does not change with a (Jj\
change in the height of the cylinder. \ |

| |

Geometric quantities may change with the i
height of the cylinder W\ |
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DATA

* Generated cylindrical polygons of length 6
to 30; 1 million for each length

* Comparison: spherical data forR =1 to 3 in
0.1 increments for lengths 10 to 50

* |dentified the knot type of each polygon —
or determine an upper bound on the crossing
number of the polygon.

* Compute the ACN, writhe, curvature, and
torsion for each polygon.

BIRS - 2024: Random Models and Experimental Data



QUESTION 1:

DO THE CYLINDRICAL POLYGONS SEEM TO BE GENERATED IN
CONFINEMENT WITHR < 12

BIRS - 2024: Random Models and Experimental Data
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RESULTS - TOPOLOGICAL
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RESULTS - TOPOLOGICAL
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RESULTS - GEOMETRICAL
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QUESTION 2:

ARE THE FEATURES OF THE CYLINDRICAL POLYGONS CONSISTENT
WITH THE FEATURES OF SPHERICAL POLYGONS?

BIRS - 2024: Random Models and Experimental Data



RESULTS - GEOMETRIC — TORSION

tOl“Sc,. (R: I-) - torsphantom (RJ L)
deltators.. (R, L) =

VT L
I . ] tors delta
0.00 L
N a=0
- 8o a=3 ]
. a=4
-0.05¢ a=5
A - -0.2 a=6
I g a=7
i ] a=8
-0.10 i 5 -04 =9
g a=10
-0.6
—-0.15¢ L.
cylindrical data only
[ spherical data only, R=30 =5
-0.20~ 6 8 10 12 14 16 18 20 22 24 26 28 30

edges
more complex knots have lower torsion

Y. Diao, C. Ernst, E.J. Rawdon, U. Ziegler, Total curvature and
total torsion of knotted random polygons in confinement, J. .
Phys. A Math. Theor. 51 (15) (2018), 154002.
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RESULTS - GEOMETRIC — WRITHE?

writhe squared, dashed: sphere with R=3; solid: cylindrical data
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RESULTS - GEOMETRIC — CURVATURE
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QUESTION 3:

* CAN THE ‘EQUIVALENT CONFINEMENT RADIUS BE QUANTIFIED?
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RESULTS — TOPOLOGICAL
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RESULTS - GEOMETRIC — CURVATURE PHANTOM
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RESULTS - TOPOLOGICAL
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RESULTS - GEOMETRIC — WRITHE?
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ASYMPTOTIC BEHAVIOR OF RANDOM POLYGONS OF
LENGTH 30 FORR = 0.5+

BIRS - 2024: Random Models and Experimental Data
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ASYMPTOTIC BEHAVIOR OF RANDOM POLYGONS OF
LENGTH 30 FOR R = 0.5+
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CONJECTURE:

UNKNOTS: = 0
NONALTERNATING: > ~80%
ALTERNATING: 2 ~ 12%
COMPOSITE: 2 ~ 6.5%

31
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OUTLINE

* MOTIVATION
* BIAS MODEL & DATA COLLECTED

* QUESTIONS:
* ARE THE GENERATED POLYGONS ‘THICKER’ ON AVERAGE?
* ARE THE FEATURES OF THE BIASED POLYGONS IN LINE WITH THE FEATURES OF UNBIASED POLYGONS?
* CAN THE EFFECT OF THICKNESS BE QUANTIFIED?

BIRS - 2024: Random Models and Experimental Data 33



MOTIVATION — BIAS TO THICKNESS

* THE RANDOM POLYGONS GENERATED WITH THE MODELS DISCUSSED FOR FAR
HAVE NO VOLUME

* WHAT WOULD BE THE EFFECT OF ADDING SOME VOLUME?

* DON'T KNOW HOW TO GENERATE RANDOM POLYGONS WITH A FIXED
THICKNESS.

* INSTEAD OF FORCING THICKNESS, WE BIAS THE GENERATION PROCESS
TOWARDS GENERATING POLYGONS WITH THICKER SEGMENTS.

BIRS - 2024: Random Models and Experimental Data
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4 BIASED THICKNESS MODEL

GENERATE ROOTED RANDOM POLYGONS IN SPHERICAL CONFINEMENT

BIAS EACH SEGMENT TOWARDS THICKNESS RIGHT AFTER ITS GENERATION

USE ACCEPT/REJECT APPROACH BASED ON MAXIMAL SEGMENT THICKNESS

CONSECUTIVE SEGMENTS ARE NOT SELF-AVOIDING

BIRS - 2024: Random Models and Experimental Data
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Definitions

A thick segment S, of thickness 1 1s the set of all points which are at a
distance d less than or equal tor; from the segment S, . 1; is called the
radius of the thick segment S..

The maximal thickness r of a thick segment S; is the largest value for
the radius r; of the thick segment S., such that the thick segment S; of
radius r; does not intersect with any other non-adjacent thick segment S
with radlus L.

The maximal thickness I, of a polygon 1s the minimum over all 1 Values /

BIRS - 2024: Random Models and Experimental Dat
e
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ALGORITHM

Algorithm to generate biased polygon of length n

Xo € origin
X1 € random point on unit sphere around origin
i €< 2ton-1
determine next vertex X;
until segment X;.1X; is accepted*
next i
Xn € Xo

* segment X;.1X; is accepted if its maximal segment thickness is
larger than a thickness chosen randomly based on the bias
function

BIRS - 2024: Random Models and Experimental Data
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DATA COLLECTED

* GENERATED RANDOM POLYGONS FOR R =1 TO 2 IN INCREMENTS OF 0.1 AND R= 2.5, R=3.0
* 50K POLYGONS FOR L=30
* 10K POLYGONS FOR L = 10, 20, 40, AND 50

* FOR BIASED AND FOR UNBIASED RANDOM POLYGONS FOR DIRECT COMPARISON
* DETERMINED KNOT TYPE FOR EACH POLYGON (UP TO 16 CR)

SHOUTOUT FOR ERIC RAWDON & ROB SHAREIN
* USING THE HOMFLY-PT POLYNOMIAL TO COMPUTE KNOT TYPES

BIRS - 2024: Random Models and Experimental Data 38
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o QUESTION 1:

ARE THE GENERATED POLYGONS ‘THICKER’ ON AVERAGE?

THAT MEANS DO THEY HAVE A LARGER AVERAGE MAXIMAL THICKNESS?
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o QUESTION 2:

ARE THE FEATURES OF THE BIASED POLYGONS IN LINE WITH THE FEATURES OF UNBIASED
POLYGONS?
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v QUESTION 3:

CAN THE EFFECT OF THICKNESS BE QUANTIFIED2
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Effect of thickness on B (L,R)
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SUMMARY W

* DISCUSSED 2 MODELS FOR EXTENSIONS TO RANDOM POLYGONS IN SPHERICAL CONFINEMENT
RELATED TO IMPORTANT QUESTIONS

* WHAT HAPPENS IN RANDOM POLYGONS IN SPHERICAL CONFINEMENT FOR R < 12

* CYLINDRICAL POLYGONS ALIGN WELL WITH MANY ASPECTS OF SPHERICAL POLYGONS IN CONFINEMENT WITH
R=0.62

* CONJECTURES FOR ASYMPTOTIC BEHAVIOR FOR L=30 FOR R—> 0.5+

* WHAT HAPPENS WHEN RANDOM POLYGONS IN SPHERICAL CONFINEMENT HAVE SOME VOLUME?
* POLYGONS BIASED TOWARDS THICKNESS SHARED MANY FEATURES WITH UNBIASED POLYGONS
* THICKER RANDOM POLYGONS CAN BE MODELED AS SHORTER RANDOM POLYGONS FOR P_3.1 (L, R)

BIRS - 2024: Random Models and Experimental Data 55 \/
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